In Situ Vinylindole Synthesis. Diels-Alder Reactions with Maleimides to Give Tetrahydrocarbazoles [1]

Wayland E. Noland*, Mary J. Walhstrom, Michael J. Konkel, Mark

E. Brigham, Annette G. Trowbridge, Lisa M. C. Konkel, Ronald

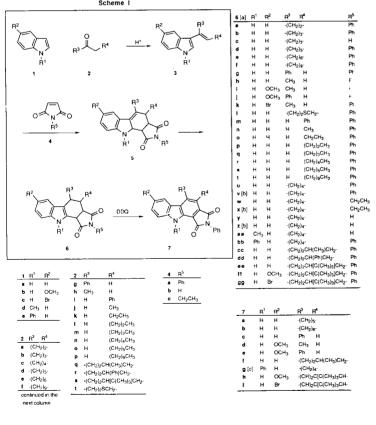
P. Gourneau, Cheryl A. Scholten, Nina H. Lee, John J. Condoluci,

Todd S. Gac, Mehrdad Mostafaei Pour and Peter M. Radford

Department of Chemistry, University of Minnesota, 207 Pleasant Street, S.E.,
Minneapolis, MN 55455
Received August 20, 1992

Tetrahydrocarbazoles have been prepared in one-flask syntheses from indoles, ketones or aldehydes, and maleimides, with acid catalysis. The reactions involve a condensation of the indole with the ketone or aldehyde, followed by an *in situ* trapping of the vinylindole in a Diels-Alder addition with a maleimide. Isomerization of the double bond into the indole nucleus gave the tetrahydrocarbazoles which were isolated (6, 9, and 10). Variation of the indole, carbonyl compound, and maleimide has been explored. The predominant stereochemistry of the tetrahydro ring in the products is all-cis, although a second stereoisomer has been isolated. Two regioisomers were generated from all unsymmetrical 2-alkanones, except 2-butanone, which gave the single isomer 9a. Aromatization of tetrahydrocarbazoles 6 to carbazoles 7 was accomplished with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone.

J. Heterocyclic Chem., 30, 81 (1993).


Discussion.

The use of Diels-Alder reactions of vinylindoles to produce carbazoles was first developed in our laboratory a number of years ago [2]. Recently, this methodology has

been exploited by a number of other researchers [3]. The "in situ vinylindole synthesis of carbazoles", also developed our laboratory, combines the synthesis of the vinylindole and the subsequent Diels-Alder reaction in one flask to produce a variety of substituted and annulated tetrahy-

cis-stereochemistry

trans-stereochemistry

numbering system P₁ 8-10 R Н CH₃ CH₂CH₂ (CH₂)₂CH₃ (CH₂)₃CH₃ (CH₂)₄CH₂ (CH₂)₅CH₂ 10 Н (CH₂)₆CH₃ н (CH₂)₇CH₃ (CH₂)₈CH₃ CH₃ CH₃ CH(CH₃)₂ CH₂CH(CH₃)₂

[a] cis-Stereochemistry (see Scheme II), unless noted otherwise

[b] trans-Stereochemistry (see Scheme II)

[c] Isolated directly from the "in situ vinylindole synthesis of carbazoles" as a minor product

W. E. Noland, M. J. Wahlstrom, M. J. Konkel, M. E. Brigham, A. G. Trowbridge, L. M. C. Konkel, R. P. Gourneau, C. A. Scholten, N. H. Lee, J. J. Condoluci, T. S. Gac, M. Mostafaei Pour and P. M. Radford

drocarbazoles. Thus, we have reported producing 1,2,3,4-tetrahydrocarbazole-2-carboxylic acids from indoles 1, a methyl or methylene ketone 2, and maleic acid [4]. In this reaction sequence, it is postulated that condensation of the indole with the ketone gives a vinylindole which undergoes cycloaddition with maleic acid, followed by double bond isomerization and regioselective decarboxylation.

The "in situ vinylindole synthesis of carbazoles" is a simple one-flask synthesis with convenient workup that provides fair to good yields of tetrahydrocarbazoles without isolating the reactive vinylindole intermediates. In the present paper, we describe our results with maleimides as the dienophiles in this synthesis.

Table I
Yields of Tetrahydrocarbazoles **6a-6t** and Physical Data [a]

Indole Keton		Maleimide one 6		Yield	$M_{\mathbf{P}}$	Emperical	Aı	ral. Calc	d.		Found	
				% °C		Formula	С	H	N	С	H	N
la	2a	4a	a	3	290-292	$\mathrm{C}_{22}\mathrm{H}_{18}\mathrm{N}_{2}\mathrm{O}_{2}$	34	12.1364	b]	34	42.1365 []	b]
la	2b	4a	b	76	310-315	$C_{23}H_{20}N_2O_2$	77.50	5.67	7.86	77.50	5.73	7.71
la	2ь	4b	e	55	306-310	$C_{17}H_{16}N_2O_2$	72.83	5.76	9.99	72.73	5.75	9.99
la	2d	4a	d	66	303-306	$C_{25}H_{24}N_2O_2$	78.09	6.30	7.28	78.17	6.46	7.19
la	2e	4a	e	57	294-300	$C_{26}H_{26}N_2O_2$	78.35	6.59	7.03	78.19	6.49	7.02
la	2f	4a	f	22	280-285	$C_{29}H_{32}N_2O_2$	79.05	7.34	6.35	79.26	7.11	6.09
la	2g	4a	g	46	297-298.5	$C_{26}H_{20}N_2O_2$	392.1520 [b]		3	392.1508 [b]		
la	2h	4a	h	17	268-269	$C_{21}H_{18}N_2O_2$	76.34	5.50	8.47	76.44	5.74	8.50
lb	2h	4a	i	26	238.5-239.5	$C_{22}H_{20}N_2O_3$	73.32	5.59	7.77	73.53	5.49	7.78
lb	2g	4a	i	44	309-310	$C_{27}H_{22}N_2O_3$	76.76	5.25	6.63	76.65	5.40	6.51
le	2h	4a	k	29	267-269	$C_{21}H_{17}BrN_2O_2$	61.63	4.19	6.84	61.50	4.34	6.62
la	2t	4a	1	19	346-350	$C_{23}H_{20}N_2O_2S$	71.11	5.19	7.21 [c]	71.00	5.19	7.03 [c]
la	2i	4a	m	18	243-243.5	$C_{26}H_{20}N_2O_2$	79.56	5.15	7.13	79.57	5.12	7.13
la	2j	4a	n	14	265-266	$C_{21}H_{18}N_2O_2$	76.34	5.50	8.47	76.27	5.34	8.41
la	2k	4a	0	9	241.5-242	$C_{22}H_{20}N_2O_2$	76.71	5.86	8.13	76.82	5.98	8.12
la	21	4a	p	20	226-227.5	$C_{23}H_{22}N_2O_2$	77.06	6.20	7.81	76.95	5.99	7.84
la	2m	4a	q	39	229.5-230.5	$C_{24}H_{24}N_2O_2$	77.38	6.51	7.52	77.27	6.57	7.43
la	2n	4a	r	11	234-235	$C_{25}H_{26}N_2O_2$	77.68	6.79	7.24	77.78	6.81	7.24
la	20	4a	8	15	227-228	$C_{26}H_{28}N_2O_2$	77.96	7.06	6.99	78.10	7.21	6.94
la	2p	4a	t	24	198-199.5	$C_{30}H_{36}N_2O_2$	78.90	7.96	6.13	79.12	8.01	6.05
1 21	~P	-1 42		24	190-199.0	03013611202	.0.70		0.10		0.01	

[a] R¹ = H. All products were white to off-white in color and had the cis-stereochemistry illustrated in Scheme II. [b] Used hrms. [c] Anal. Calcd.: S, 8.25. Found: S, 8.41.

Table II

Yields of Tetrahydrocarbazoles 6u-6gg and Physical Data [a]

Indol	e I	Maleimide ne 6		Maleimide		Stereo- Yield		Мр	Emperical	An	al. Calc	d.	Found			
Ketor				ne		chemistry	%	۰Ċ	Formula	С	Н	N	С	H	N	
la	2e	4a	u	cis	32, 33	305-307	$C_{24}H_{22}N_2O_2$	77.81	6.00	7.56	77.78	5.86	7.42			
			v	trans	40, 35	214-215	$C_{24}H_{22}N_2O_2$	77.81	6.00	7.56	77.87	6.03	7.56			
la	2 e	4e	w	cis	34	202-204	$C_{20}H_{22}N_2O_2$	74.50	6.89	8.68	74.63	6.87	8.64			
			x	trans	34	218-222.5	$C_{20}H_{22}N_2O_2$	74.50	6.89	8.68	74.71	6.99	8.60			
la	2e	4b	y	cis	26	328-330	$C_{18}H_{18}N_2O_2$	73.45	6.16	9.52	73.46	6.16	9.35			
			Z	trans	20	276-278	$C_{18}H_{18}N_2O_2$	29	4.1364 [[b]	29	4.1365 [[b]			
14	2e	4b	aa	cis	31	285-287	$C_{19}H_{20}N_2O_2$	73.99	6.55	9.08	74.16	6.52	8.98			
le	2e	4a	bb	cis	13 [c]	213-215	$C_{30}H_{26}N_2O_2$	80.69	5.87	6.27	80.70	5.89	6.18			
la	2q	4a	ee	cis	52	303-305	$C_{25}H_{24}N_2O_2$	78.09	6.30	7.28	77.98	6.18	7.23			
la	2r	4a	dd	cis	27	310-315	$C_{30}H_{26}N_2O_2$	80.68	5.88	6.27	80.87	6.00	6.11			
la	2s	4a	ee	cis	50	266-268	$C_{28}H_{30}N_2O_2$	78.83	7.10	6.56	78.60	6.90	6.54			
1b	2s	4a	ſſ	cis	83	291.5-292.5	$C_{29}H_{32}N_2O_3$	76.29	7.06	6.14	76.47	7.23	6.21			
le	2s	4a	gg	cis	43	299-302	$\mathrm{C_{28}H_{29}BrN_2O_2}$	66.54	5.78	5.54	66.74	5.67	5.44			

[[]a] All products listed were white to off-white. [b] Used hrms. [c] Carbazole 7g (2%) was also isolated (Table VII).

Table III
Spectral Data for Tetrahydrocarbazoles **6a-6t**

	¹ H NMR	Data [a], J	in Hertz			IR	MS
6	10b	3a	4	5	Other	C=O	(M*+, relative
-			_	_		cm ⁻¹	intensity)
							,,
a	4.60	3.41	3.40	3.62	11.26 (s, 1 H), 7.55-7.41 (m), 7.38 (d, J = 7.7), 7.26 (d, J = 7.8)	1690	342 (14)
	d	m	m	p t	area for 7.55-7.26 is 7 H), 7.11 (t, J = 7.0, 1 H), 6.99		
	J = 6.7				(t, J = 7.4, 1 H), 2.41 (m, 1 H), 1.91 (m, 1 H), 1.72 (m, 1 H),		
	1 H	[b]	[b]	1 H	1.52 (pt, 1 H)		
b	4.50	3.66	2.76	3.45	11.14 (s, 1 H), 7.56-7.51 (m), 7.47 (d, $J = 7.2$, area for 7.56-	1690	356 (100)
	dd	dd	6-line	p t	7.47 was 4 H), $7.39 (d, J = 7.9, 1 H)$, $7.28 (dd, J = 7.8, 1.4, 2 H)$,		
	J = 8.2,	J=8.2,	m		7.06 (t, J = 7.0, 1 H), 6.96 (t, J = 7.0, 1 H), 2.35 (m, 1 H),		
	1.8	5.9			2.10 (m, 1 H), 1.61 (m, 2 H), 1.48 (5-line m, 1 H), 1.34 (m, 1 H)		
	1 H	1 H	1 H	1 H		3.605	200 (200)
c	4.26	3.43	2.61	3.34	11.37 (s, 1 H), 11.06 (s, 1 H), 7.52 (d, J = 7.61 H), 7.38	1695	280 (100)
	dd	dd	6-line	p t	(d, J = 7.7, 1 H), 7.06 (dt, J = 7.5, 1.0, 1 H), 6.95 (dt, J = 7.4, 1.0)		
	J = 8.3	J=8.3,	m		1.2, 1 H), 2.28 (m, 1 H), 2.07(m, 1 H), 1.60-1.34 (m, 3 H),		
	1.8	6.0 ~2 H [c]	1 11	1.11	1.20 (m, 1 H)		
d	1 H 4.35	~2 m [c] 3.65	1 H 2.52	1 H 3.27	10.98 (s, 1 H), 7.52-7.38 (m, 4 H), 7.37 (d, J = 7.5, 1 H),	1690	384 (92)
u	4.55 d	dd			7.16 (d, $J = 8.1, 2 \text{ H}), 7.06$ (t, $J = 7.5, 1 \text{ H}), 6.97$ (t, $J = 7.5, 1 \text{ H})$	1090	304 (92)
	J = 8.0	aa	m	m	1 H), $2.02-1.79 (m, 6 H)$, $1.64-1.34 (m, 4 H)$		
	1 H	1 H	~8 H [d]	~15 H [c]	1 11), 2.02-1.19 (m, 0 11), 1.01-1.01 (m, 111)		
e	4.41	3.63	2.30	3.46	11.04 (s, 1 H), 7.48-7.40 (m, 4 H), 7.36 (d, J = 8.4, 1 H), 7.15	1690	398 (98)
•	d	dd	m	m	(d, $J = 7.2$, 2 H), 7.06 (t, $J = 7.5$, 1 H), 6.98 (t, $J = 7.4$, 1 H),	20,0	050 (50)
	J = 8.5	J = 8.6			2.02-1.60 (m, 8 H), 1.47 (m, 4 H)		
	1 H	5.2, 1 H	1 H	1 H			
ſ	4.41	3.58	2.09	3.34	11.18 (s, 1 H), 7.56-7.37 (m, 4 H), 7.35 (d, J = 7.9, 1 H), 7.16	1690	440 (92)
	d	dd	m	m	(d, J = 7.4, 2 H), 7.06 (t, J = 7.9, 1 H), 6.98 (t, J = 7.7, 1 H),		, ,
	J = 8.8	J = 8.7,			1.83 (m), 1.59 (m), 1.36 (m), 1.15 (m, area for 1.83-1.15 was		
	1 H	5.5, 1 H	1 H	~12 H [c]	18 H)		
g	4.55	3.63	2.44	4.42	11.41 (s, 1 H), 7.42 (m, 4 H), 7.21 (m, 3 H), 7.08 (m, 5 H), 6.79	1694	392 (86)
	d	dd	m	t	(m, 2 H)		
	J = 8.6	J = 8.4,		J = 5.4			
_	1 H	6.5, 1 H	2 H	1 H			
h	4.42	3.60	2.43	3.18	11.12 (s, 1 H), 7.51-7.41 (m, 4 H), 7.37 (d, $J = 8.0, 1 H$), 7.19	1690	344 (41)
	d Tos	dd T	<i>p</i> q	p q	(d, J = 7.1, 2 H), 7.06 (t, J = 7.0, 1 H), 6.96 (t, J = 7.0, 1 H),		
	J = 8.5	J = 8.6	1 11	1 H	1.34 (m, 3 H), 1.23 (d, J = 6.7, 3 H)		
i	1 H 4.42	5.6, 1 H 3.64	1 H 2.15	3.28	11.00 (s, 1 H), 7.52-7.42 (m, 3 H), 7.29-7.23 (m, 3 H), 7.01	1694	360 (82)
•	d	m	m.	m.	(s, 1 H), 6.73 (d, J = 8.7, 1 H), 3.77 (s, 3 H), 1.26 (d, 6.9, 3 H)	1094	300 (82)
	J = 8.5	<i></i>	***		(a, 1 11), 0.10 (d, 3 = 0.1, 1 11), 0.11 (a, 0 11), 1.20 (d, 0.2, 0 11)		
	1 H	1 H	2 H	1 H			
j	4.52	3.62	2.47	4.39	11.22 (s, 1 H), 7.45-7.19 (m), 7.10 (t, J = 8.4, area for 7.45-7.10	1695	422 (100)
	d	m	m	m	was 11 H), 6.70 (dd, J = 8.8, 2.4, 1 H), 6.23 (d, J = 2.3, 1 H),		()
	J = 8.6				3.64 (s, 3 H)		
	1 H	1 H	2 H	1 H			
k	4.46	3.62	2.13	3.23	11.44 (s, 1 H), 7.72 (d, J = 1.8, 1 H), 7.55-7.43 (m, 3 H), 7.46	1692	410 (47)
	d	dd	m	m	(d, J = 8.6, 1 H), 7.28-7.17 (m, 3 H), 1.26 (d, J = 7.0, 3 H)		408 (49)
	J = 8.6	J = 14.6,					
_	1 H	6.1, 1 H		1 H			
I	4.52	3.69	2.76	3.52	11.32 (s, 1 H), 7.63-7.43 (m, 5 H), 7.35 (d, J = 7.3, 2 H), 7.12	1680	388 (100)
	d	dd	m	m	(t, J = 7.2, 1 H), 7.01 (t, J = 7.3, 1 H), 2.61-2.43 (m, 4 H),		
	J = 8.8	J = 8.5,	1 17	1.77	2.18-2.04 (m, 2 H)		
	1 H	5.3, 1 H	1 H	1 H			

[[]a] In dimethyl sulfoxide-d₆, unless otherwise noted; pt = pseudo triplet. See Scheme II for the numbering system. [b] The area for 3.41-3.40 was 2 H. [c] Includes water. [d] Includes dimethyl sulfoxide.

W. E. Noland, M. J. Wahlstrom, M. J. Konkel, M. E. Brigham,
A. G. Trowbridge, L. M. C. Konkel, R. P. Gourneau, C. A. Scholten, N. H. Lee,
J. J. Condoluci, T. S. Gac, M. Mostafaei Pour and P. M. Radford

The acid-catalyzed condensations of 3-unsubstituted indoles with ketones have been postulated to proceed through 3-vinylindole intermediates 3 [4,5]. Intermediates 3 have been isolated, in many instances, when the vinylindoles were sufficiently stable under the reaction conditions [5]. We did not attempt, in this study, to isolate the vinylindole intermediates. Instead, the intermediates were trapped in Diels-Alder additions with maleimides and the resulting tetrahydrocarbazoles 5 underwent double-bond isomerization to give the tetrahydrocarbazoles 6 (Scheme

I). Yields varied considerably in these reactions from 3% for **6a** to 83% for **6ff**. Physical and spectral data for **6** are provided in Tables I-V. Tetrahydrocarbazoles **6** were aromatized [4,6] with 2,3-dichloro-5,6-dicyano-1,4-benzo-quinone (DDQ) in good yields, typically greater than 90%, to give carbazoles **7** (Table VI). Tetrahydrocarbazole **6cc** was selectively aromatized, by using 2 equivalents of DDQ, to the carbazole **7f** in 88% yield. Physical and spectral data for **7** are provided in Tables VII and VIII.

Table IV

More Spectral Data for Tetrahydrocarbazoles 6

					-				
	l _{H NMR}	Data [a],	I in Heri	2			IR	MS	
6	10b	3a	4	 5α	5β	Other	C=O cm ⁻¹	(M*+, relative intensity)	
m [b]	4.66 d	4.10 dd	3.66 m	3.11 dd J = 15.6,	3.23 dd J = 15.3,	11.32 (s, 1 H), 7.52 (d, J = 7.7), 7.46 (d, J = 8.0), 7.36-7.23 (m), 7.13 (t, J = 7.5), 7.02 (t, J = 7.4), 6.79 (d, area for 7.52-6.79 was 14 H)	1710	392 (100)	
	J = 7.9 1 H	J = 7.9, 5.3, 1 H	[c]	J = 15.6, $7.3 [c]$	J = 13.3, 4.5 [c]	0.19 (d, area for 1.52-0.19 was 14 11)			
n	4.29	3.55	2.56	2.68	2.94	8.45 (s, 1 H), 7.51 (d, J = 7.9, 1 H), 7.45-7.37	1675	330.1366	
••	d	dd	m	ddd	ddd	(m, 3 H), 7.35 (dd, J = 8.2, 2.2, 1 H), 7.25-7.17		(100) [d]	
	J = 8.1	J = 8.1		J = 15.4,	J = 15.4	(m), 7.12 (t, area for $7.25-7.12$ was ~ 15 H [e]),			
	•	4.6		10.2, 1.7	4.2, 1.9	1.42 (d, J = 6.9, 3 H)			
	1 H	1 H	1 H	1 H	1 H				
0	4.31	3.63	2.16	2.62	2.97	8.42 (s, 1 H), 7.53 (d, J = 7.7, 1 H), 7.43-7.36 (m),	1690	344 (100)	
	d	dd	m	dd	dd	7.33 (d, $J = 8.2$, area for $7.43-7.33$ was $4 H$), $7.22-$			
	J = 7.9	J = 7.9,		J = 15.7,	J = 15.7,	7.09 (m, 4 H), 2.00 (m, 2 H), 1.09 (d, J = 7.3, 3 H)			
	1 H	4.6, 1 H	1 H	10.2, 1 H			2 < 0.0	050 (300)	
P	4.30	3.60	2.26	2.61	2.95	8.43 (s, 1 H), 7.52 (d, J = 7.7, 1 H), 7.43-7.35	1690	358 (100)	
	d	dd	m	ddd	dd	(m, 3 H), 7.32 (d, J = 8.4, 1 H), 7.22-7.10 (m, 4 H),			
	J = 7.9	J = 7.9,		J = 15.7	J = 15.7,	1.93 (m, 2 H), 1.51 (m, 2 H), 0.98 (t, J = 7.3, 3 H)			
		4.4		10.4, 2.0	4.3				
	1 H	1 H	1 H	1 H 2.62	1 H 2.96	8.54 (s, 1 H), 7.54 (d, J = 7.5, 1 H), 7.44-7.32	1690	372.1817	
q	4.29 d	3.60 dd	2.22 m	ddd	2.96 dd	(m, 3 H), 7.28 (dd, J = 7.5, 1.0, 1 H), 7.22-7.18	1050	(100)[f]	
	J = 7.9	J = 7.9	111	J = 15.7,	J = 15.7,	(m, 3 H), 7.13 (dt, J = 7.4, 1.1, 1 H), 1.97 (m, 2 H),		(/[-]	
	J = 1.2	4.4		10.4, 1.9	4.4	1.42 (m, 4 H), 0.95 (t, J = 7.1, 3 H)			
	1 H	1 H	1 H	1 H	1 H				
r	4.31	3.62	2.24	2.61	2.95	8.43 (s, 1 H), 7.52 (d, $J = 7.7, 1 H$), 7.43-7.36 (m),	1695	386 (100)	
	d	dd	m	ddd	dd	7.32 (d), 7.20-7.18 (m), 7.12 (t, area for 7.43-7.12			
	J = 7.9	J = 7.9,		J = 10.5	J = 15.7,	was $\sim 11~\mathrm{H}$ [e]), 1.97 (m, 2 H), 1.56-1.28 (m, $\sim 7~\mathrm{H}$			
		4.4			4.4	[g]), $0.90 (t, J = 6.6, 3 H)$			
	1 H	1 H	1 H	1 H	1 H		7.600	400 (00)	
S	4.30	3.60	2.24	2.62	2.96	8.42 (s, 1 H), 7.53 (d, J = 7.5, 1 H), 7.44-7.10	1680	400 (83)	
	d	dd	m	ddd	dd	(m, 8 H), 1.97 (m, 2 H), 1.48 (m, 2 H), 1.33 (m,			
	J = 7.9	J = 7.9		J = 15.7	J=15.7,	6 H), $0.90 (t, J = 7.1, 3 H)$			
	3 TT	4.4) TT	10.4, 1.9	4.4 1 H				
	1 H	1 H	1 H 2.23	1 H 2.62	2.95	8.43 (s, 1 H), 7.52 (d, J = 7.7, 1 H), 7.43-7.34	1690	456.2778	
t	4.31 d	3.61 dd	2.23 m	ddd	2.93 dd	(m, 3 H), 7.32 (d, J = 8.1, 1 H), 7.20-7.10 (m, 3 H)	10/0	(100)[h]	
	a J = 7.9	J = 7.9,	***	J = 10.5	J = 15.7	4 H), 1.95 (m, 2 H), 1.48 (m, 2 H), 1.27 (m, 14 H),		//[]	
	J - 1.9	3 = 1.9, 4.4		J - 10.0	4.2	0.88 (t, J 6.6, 3 H)			
	1 H	1 H	1 H	1 II	1 H				

[[]a] In deuteriochloroform, unless otherwise noted. See Scheme II for the numbering system. [b] In dimethyl sulfoxide-d₆. [c] The area for 3.66-3.11 was 3 H. [d] Used hrms. Calcd.: 330.1364. [e] Includes chloroform. [f] Used hrms. Calcd.: 372.1832. [g] Includes water. [h] Used hrms. Calcd.: 456.2768.

Table V
Spectral Data for Tetrahydrocarbazoles **6u-6gg**

				D pectra.	Date for Testanyaroundanion on Tage		
	¹ H NMR Data	a [a], J in Her	tz			IR	MS
6	10b	3a	4	5	Others	C=O cm ⁻¹	(M*+, relative intensity)
u [b]	4.15 dd J = 8.9, 2.3	3.56 dd J = 8.9, 5.7	2.62 m	3.39 m	8.75 (s, 1 H), 7.72 (d, J = 8.0, 1 H), 7.51-7.39 (m, 5 H), 7.27 (dd, J = 8.5, 1.5, 2 H), 7.18 (t, J = 7.6, 1 H), 7.10 (t, J = 7.5,	1700	370 (100)
	1 H	1 H	1 H	1 H	1 H), 2.92 (pd, J = 13.8, 1 H), 1.79 (m, 1 H), 1.68-1.48 (m, 2 H), 1.42-1.20 (m, 4 H)		
v [b]	4.31 dd J = 7.9, 1.9	3.40 dd J = 7.8, 4.1	1.84 <i>p</i> t	2.88 pt	8.56 (s, 1 H), 7.75 (d, J = 7.9, 1 H), 7.42-7.34 (m, 3 H), 7.25 (d, J = 7.9, 1 H), 7.17-7.13 (m, 3 H), 7.07 (t, J = 7.4, 1 H), 2.98	1710	370 (100)
	1 H	1 H	[c]	1 H	(pd, J = 12.8, 1 H), 2.47 (dq, J = 12.8, 3.1, 1 H), 1.94 (m [c]), 1.57 (pq, 1 H), 1.44-1.32 (m, 2 H)		
v	4.41 d J = 7.9	3.65 dd $J = 7.7, 4.1$	1.74 pt	2.73 pt			
	1 H	1 H	1 H	1 H	2.95 (pd, J = 11.4, 1 H), 2.34 (pq, 1 H), 1.88 (m, 3 H), 1.48 (pt, 1 H), 1.31 (m, 3 H)		
w	4.23 d J = 8.5	3.40 dd J = 8.3, 5.6	2.35 m	3.27 m	11.16 (s, 1 H), 7.59 (d, J = 7.9, 1 H), 7.44 (d, 8.0, 1 H), 7.05 (t, J = 7.8, 1 H), 6.94 (t, J = 8.0, 1 H), 3.49 (q, J = 7.2, 2 H),	1675	322 (100)
	1 H	1 H	1 H	1 H	2.81 (pd, J = 13.5, 1 H), 1.69 (pt, 1 H), 1.46 (m, 2 H), 1.22 (m, 2 H), 1.09 (t, J = 7.1), 1.05 (m, area for 1.09-1.05 was 5 H)		
x	4.23 dd J = 7.9, 1.7	3.41 dd J = 7.9, 4.3	1.64 pt	2.51 pt	11.10 (s, 1 H), 7.59 (d, J = 8.0, 1 H), 7.33 (d, J = 8.0, 1 H), 7.02 (t, J = 7.4, 1 H), 6.89 (t, J = 7.5, 1 H), 3.31 (m, 2 H), 2.89	1685	322 (100)
	1 H	1 H	1 H	1 H	(pd, J = 10.1, 1 H), 2.31 (pq, 1 H), 1.82 (m, 3 H), 1.44 (pq, 1 H), 1.24 (m, 2 H), 0.96 (t, J = 7.1, 3 H)		
y	4.24 d J = 8.5	3.33 dd J = 8.5, 5.4	2.26 m	3.24 m	11.37 (s, 1 H), 11.01 (s, 1 H), 7.59 (d, J = 7.9, 1 H), 7.41 (d, J = 7.9, 1 H), 7.04 (t, J = 7.0, 1 H), 6.94 (dt, J = 7.5, 1.2, 1 H),	1705	294 (79)
	1 H	1 H	1 H	1 H	2.80 (pd, J = 13.7, 1 H), 1.68 (pt, 1 H), 1.49 (m, 2 H), 1.25- 1.02 (m, 4 H)		
Z	4.15 dd J = 7.9, 1.6	3.36 dd J = 7.8, 4.2	1.60 pt	2.59 pt	11.10 (s, 1 H), 11.02 (s, 1 H), 7.61 (d, J = 8.0, 1 H), 7.34 (d, J = 8.0, 1 H), 7.02 (t, J = 7.5, 1 H), 6.90 (t, J = 7.3, 1 H), 2.86 (pd,	1705	294 (91)
	1 H	1 H	1 H	1 H	J = 10.6, 1 H, 2.25 (pt, 1 H), 1.83 (m, 3 H), 1.47-1.03 (m, 3 H)		
aa	4.49 d J = 7.9	3.29 dd $J = 8.0, 5.0$	2.28 m	3.26 m	11.39 (s, 1 H), 7.65 (d, J = 8.0, 1 H), 7.43 (d, J = 8.1, 1 H), 7.14 (t, J = 7.3, 1 H), 7.00 (t, J = 7.1, 1 H), 3.84 (s, 3 H), 2.83 (pd,	1695	308 (85)
	1 H	[d]	1 H	[q]	J = 13.0, 1 H), 1.69 (pt, 1 H), 1.55 (pd, J = 11.7, 1 H), 1.45 (pd, J = 12.8, 1 H), 1.21 (m, 2 H), 1.08 (m, 2 H)		
bb [b]	4.53 dd J = 8.5, 1.7	3.42 dd J = 8.5, 4.6	2.39 m	3.09 m	7.85 (dd, J = 8.5, 2.1, 1 H), 7.54-7.06 (m, 16 H [e]), 2.94 (m, 1 H), 1.93 (m, 4 H), 1.53-1.25 (m, 4 H [f])	1710	446 (4)
	1 H	1 H	1 H	1 H			
cc	4.16 d	3.58 dd	2.81 m	3.30 m	8.67 (s, 1 H), 7.69 (d, J = 8.0, 1 H), 7.50-7.37 (m, 4 H), 7.26	1695	384 (100)
[b]	J = 8.7	J = 8.7, 5.9			(d, J = 6.2, 2 H), 7.18 (t, J = 7.0, 1 H), 7.10 (t, J = 7.0, 1 H),		
	1 H	1 H	1 H	1 H	2.45-2.25 (m, 1 H), 2.11-2.03 (m, 2 H), 1.70-1.55 (m, 2 H), 1.30 (m, 1 H), 1.25 (m, 1 H), 1.03 (d, J = 7.1, 3 H)	1600	446 (300)
dd	4.50 d $J = 8.2$	3.72 m		3.25 m	11.15 (s, 1 H), 7.60-7.41 (m, 5 H), 7.33-7.19 (m, 7 H), 7.09 (t, J = 7.1, 1 H), 6.99 (t, J = 7.0, 1 H), 2.35-1.60 (m, 7 H)	1690	446 (100)
	1 H	1 H	1 H	1 H	31 01 / 1 II \ C 50 C 41 / 4 II \ C 20 / 1 I \ 0 0 1 II \ 7 17	1690	426 (100)
ee	4.42 d $J = 8.3$	3.70 m	2.60 m		11.01 (s, 1 H), 7.50-7.41 (m, 4 H), 7.36 (d, J = 8.0, 1 H), 7.17 (d, J = 7.0, 2 H), 7.05 (t, J = 7.5, 1 H), 6.96 (t, J = 7.4, 1 H),	1090	420 (100)
	1 H	1 H	1 H	1 H	2.21-2.03 (m, 3 H), 1.78 (pd, 1 H), 1.64 (6-line m, 1 H), 1.26 (pq, 1 H), 1.06 (m, 1 H), 0.90 (s, 9 H)		
ee [b]	4.31 d $J = 8.1$	3.52 dd J = 8.1, 5.9,	2.70 m	3.01 m	8.41 (s, 1 H), 7.55 (d, J = 7.7, 1 H), 7.45-7.36 (m, 3 H), 7.33 (d, J = 8.0, 1 H), 7.21-7.08 (m, 4 H), 2.35-2.16 (m, 3 H), 1.86		
. ,	1 H	1 H	1 H	1 H	(pd, 1 H), 1.74 (6-line m, 1 H), 1.30-1.16 (6-line m, 2 H), 0.93 (s, 9 H)		
ff	4.41 d J = 8.4	3.70 m	2.59 m	2.91 m	10.86 (s, 1 H), 7.55-7.40 (m, 3 H), 7.25 (d, J = 8.7, 1 H), 7.18 (d, J = 8.1, 2 H), 6.97 (s, 1 H), 6.72 (d, J = 8.8, 1 H), 3.76	1695	456 (80)
	1 H	1 H	1 H	1 H	(s, 3 H), 2.12-2.02 (m, 3 H), 1.78-1.61 (m, 2 H), 1.30-1.00 (m, 2 H), 0.90 (s, 9 H)		
gg	4.46 d J = 8.4	3.71 pt	2.58 m	2.94 m	11.27 (s, 1 H), 7.68 (s, 1 H), 7.52-7.42 (m, 3 H), 7.33 (d, J = 8.6, 1 H), 7.18 (pd, 3 H), 2.24-1.90 (m, 3 H), 1.75 (pd, 1 H),	1690	506 (100) 504 (100)
	1 H	1 H	1 H	1 H	1.60 (m, 1 H), 1.28 (m, 1 H), 1.02 (m, 1 H), 0.89 (s, 9 H)	C . C	homo II for the

[a] In dimethyl sulfoxide-d₆, unless otherwise noted; pd = pseudo doublet, pt = pseudo triplet, pq = pseudo quartet. See Scheme II for the numbering system. [b] In deuteriochloroform. [c] The area for 1.94-1.84 was 4 H. [d] The area for 3.29-3.26 was 2 H. [e] Includes chloroform. [f] Includes water.

W. E. Noland, M. J. Wahlstrom, M. J. Konkel, M. E. Brigham, A. G. Trowbridge, L. M. C. Konkel, R. P. Gourneau, C. A. Scholten, N. H. Lee, J. J. Condoluci, T. S. Gac, M. Mostafaei Pour and P. M. Radford

Table VI

Aromatization of Tetrahydrocarbazoles 6 with DDQ to Give
Carbazoles 7

Tetrahydrocarbazole	Product	Yield %
6 d	7a	90
6e	7b	48
6g	7e	95
6i	7d	64
6 j	7e	95
6cc	71	88
ett	7h	96
6gg	7i	92

Table VII

Data for Carbazoles 7 [a]

Carbazole	Mp °C	Empirical Formula	HRMS Caled.	(M+*) Found
7a	310-311	$C_{25}H_{20}N_2O_2$	380.1520	380.1493
7b	333-335	$C_{26}H_{22}N_2O_2$	394.1676	394.1657
7c	310-311	$C_{26}H_{16}N_2O_2$	388.1208	388.1223
7d	299-300	$C_{22}H_{16}N_2O_3$	[b]	[b]
7e	281-282	$C_{27}H_{18}N_2O_3$	418.1313	418.1292
71	304-308	$C_{25}H_{20}N_2O_2$	380.1520	380.1512
7g	260-263	$C_{30}H_{22}N_2O_2$	[c]	[c]
7h	338 dec	$C_{29}H_{24}N_2O_3$	448.1781	448.1769
7i	378-380	$C_{28}H_{21}BrN_2O_2$	469.0781	496.0788

[a] Compounds **7a-g** were obtained as yellow crystals. Compounds **7h-7i** were obtained as orange crystals. [b] *Anal.* Calcd.: C, 74.15; H, 4.53; N, 7.86. Found: C, 73.98; H, 4.67; N, 7.65. For ms, M+* (relative intensity): 456 (100). [c] *Anal.* Calcd.: C, 81.43; H 5.01; N, 6.33. Found: C, 81.49; H, 5.05; N, 6.23. For ms, M+* (relative intensity): 442 (76).

The predominant stereoisomer of the carbazoles 6 has all of the hydrogens of the tetrahydro ring cis to each other, although a second isomer was isolated which had the trans-5H stereochemistry illustrated in Scheme II. Both stereoisomers result from endo addition in the Diels-Alder step, which determines the 10b-H, 3a-H, and 4-H as all cis (see Scheme II for numbering). This is followed by double-bond isomerization of intermediate 5 (Scheme I), and, if protonation at the 5-position occurred on the less hindered face of the molecule (followed by deprotonation at the 10a-postion), this would give the cis-stereochemistry of the predominant product. If the protonation occurred on the more hindered face of 5, then the minor trans stereoisomer would be formed.

The stereochemistry was determined by nmr studies and other evidence. It would be expected that the 10b-H and 3a-H would be cis due to the nature of the Diels-Alder reaction. When an acidic solution of 1-methylindole, acetone, and maleimide was refluxed, a bridged carbazole derivative was formed that resulted from an oxidation of the tetrahydrocarbazole 5 to a dihydrocarbazole, followed by a second Diels-Alder reaction with maleimide [7]. An X-ray crystal structure determination of this product showed that the hydrogens α to the carbonyls are cis. In the tetrahydrocarbazoles 5, the relatively low coupling constants, J_{10b,3a} of 7.9-9.0 Hertz, are consistent with the cis assignment. Epimerization of the 10b-H or 3a-H didn't occur under the acidic (possibly equilibrating) conditions, possibly due to ring strain. Models indicate that there is considerably more stain in a trans 6:5 ring-fusion in this system than in a cis 6:5 ring-fusion. Coupling constants, J_{3,4} of 4.1 to 6.0 Hertz established that the 3a-H and 4-H

Table VIII
Spectral Data for Carbazoles 7

Carbazole	¹ H NMR Data [a], J in Hertz	IR, C=O cm ⁻¹
7a	11.99 (s, 1 H), 8.35 (d, J = 8.1, 1 H), 7.70 (d, J = 8.2, 1 H), 7.58-7.43 (m, 6 H), 7.27 (t, J = 7.6, 1 H), 3.58 (m, 4 H),	1687
	1.89 (m, 2 H), 1.79 (m, 2 H), 1.66 (m, 2 H)	
7b	12.04 (s, 1 H), 8.23 (d, J = 8.0, 1 H), 7.71 (d, J = 8.2, 1 H), 7.59-7.45 (m, 6 H), 7.31 (t, J = 7.6, 1 H), 3.50 (m, 4 H),	1688
	1.92 (m, 2 H), 1.74 (m, 2 H), 1.38 (m, 4 H)	
7e	12.41 (s, 1 H), 7.72 (d, J = 8.1, 1 H), 7.65-7.47 (m, 12 H), 7.30 (d, J = 8.0, 1 H), 7.06 (t, J = 7.9, 1 H)	1702, 1761
7d	12.04 (s, 1 H), 7.65 (dd, J = 7.9, 2.3, 1 H), 7.61-7.42 (m, 7 H), 7.21 (dd, J = 8.8, 2.4, 1 H), 3.89 (s, 3 H), 2.97 (s, 3 H)	1701
7e	12.27 (s, 1 H), 7.66-7.47 (m, 12 H), 7.17 (dd, J = 8.9, 2.5, 1 H), 6.73 (d, J = 2.4, 1 H), 3.55 (s, 3 H)	1701
7f	12.03 (s, 1 H), 8.19 (d, J = 7.9, 1 H), 7.69 (d, J = 8.0, 1 H), 7.60-7.42 (m, 6 H), 7.28 (t, J = 7.3, 1 H), 3.60-3.30	1691
	(m, 8 H [b]), 2.60 (m, 1 H), 2.00 (m, 1 H), 1.95 (m, 1 H), 1.57 (m, 1 H), 1.14 (d, J = 6.4, 3 H)	
7g [c]	8.31 (d, J = 7.7, 1 H), 7.56 (m, 4 H), 7.48-7.26 (m, 8 H), 7.17 (d, J = 8.3, 1 H), 3.55 (t, J = 6.4, 2 H), 3.45 (t, J =	1707
J	5.9, 2 H), 2.18-1.99 (m, 4 H)	
7h	12.26 (s, 1 H), 9.08 (d, J = 2.0, 1 H), 8.90 (d, J = 9.1, 1 H), 8.08-8.02 (m, 2 H), 7.77 (d, J = 8.9, 1 H), 7.61-7.49	1702
	(m, 5 H), 7.26 (dd, J = 9.0, 2.3, 1 H), 4.00 (s, 3 H), 1.48 (s, 9H)	
7i	12.55 (s, 1 H), 9.06 (d, $J = 1.9$, 1 H), $8.86-8.79$ (m, 2 H), 8.01 (d, $J = 9.0$, 1 H), 7.75 (t, $J = 8.7$, 1 H), 7.69 (d, $J = 9.0$)	1698
	8.8, 1 H), 7.61-7.48 (m, 5 H), 1.46 (s, 9 H)	

[[]a] In dimethyl sulfoxide-d₆, unless otherwise noted. [b] Includes water. [c] In deuteriochloroform.

are cis and that, therefore, the cycloadditions were endo for all reactions studied. The stereochemistry of the 5-H for most of the compounds was assigned by comparision of nmr and other physical data to those of 6y and 6z. Tetrahydrocarbazoles 6y and 6z are stereoisomers which were separated by fractional crystallization. Tetrahydrocarbazole 6y had a lower solubility in ethanol and a significantly lower melting point, by approximately 90°, than 6z. Establishment of the stereochemisity of 10b-H, 3a-H, and 4-H as all cis left only 5-C as a possible epimeric center. HETCOR, COSY, and DEPT experiments were used to assign the 'H nmr peaks. It was found that the 5-H in 6y gave a narrow multiplet ($w_{1/2} = \sim 11$ Hertz) at 3.23 ppm while the 5-H in 6z gave a pseudo triplet ($w_{1/2} = -25$ Hertz) at 2.61 ppm. The narrow multiplet fits the cis assignment in this system, since the 5-H would have two equatorial-axial (ea) and one equatorial-equatorial (ee) relationships with neighboring hydrogens. All of these couplings would be small and could lead to the narrow multiplet for the 5-H. In contrast, models show that the trans system forces the 5-H to have one ea and two axialaxial (aa) relationships with neighboring hydrogens. It could be postulated that the coupling constant for the ea interaction is close to zero and the coupling constants for the two aa interactions are similar to each other. This could account for the pseudo triplet observed for 6z. Two other pairs of isomers, 6u/6v and 6w/6x, were isolated. Their stereochemistry was assigned by comparison with 6v/6z. The ¹H nmr chemical shifts for the 5-H of the cis isomers ranged from 3.24 to 3.39 ppm, while those for the trans isomers ranged from 2.51 to 2.88 ppm. The chemical shifts for the 4-H of the cis isomers ranged from 2.26 to 2.62, while those for the trans isomers ranged from 1.60 to 1.84 ppm. These differences were used for assigning the stereochemistry of the other tetrahydrocarbazoles. The assignment of stereochemistry of 6a was also based partially on ring strain for the cis vs. trans 6:4 ring fusion. Although trans 6:4 fused ring system are known [8], they are more highly strained than cis 6:4 systems. In addition, 6a has the additional constraints of a double bond and a cis-fused succinimide ring, so a trans fusion is unlikely in 6a.

Table IX
Yields of Tetrahydrocarbazoles **9** and **10** and Physical Data

Ketone	Product	Yield	Mp, °C	o, °C Emperical		nal. Calcd	L	Found			
Ketone	[a]	%	мр, с	Formula	С	H	N	С	H	N	
8a	9a	46	266-267	$C_{22}H_{20}N_2O_2$	76.71	5.86	8.13	76.75	6.00	8.16	
8b	9 b	37	189-190	$C_{23}H_{22}N_2O_2$	77.06	6.20	7.81	76.86	6.28	7.75	
	10ь	5	210-212	$C_{23}H_{22}N_2O_2$	358.1676 [b]		•}	3	358.1646 [b]		
8e	9e	59	112-114	$C_{24}H_{24}N_2O_2$	372.1832 [b]			372.1842 [b]			
	10e	8	238-240	$C_{24}H_{24}N_2O_2$	77.38	6.51	7.52	77.33	6.30	7.51	
8d	9 d	50	163-164	$C_{25}H_{26}N_2O_2$	77.68	6.79	7.24	77.70	6.74	7.27	
	10d	15	240-241	$C_{25}H_{26}N_2O_2$	77.68	6.79	7.24	77.69	6.61	7.19	
8e	9e	60	206-207	$C_{26}H_{28}N_2O_2$	77.96	7.06	6.99	77.79	7.01	7.04	
	10e	17	230-231	$C_{26}H_{28}N_2O_2$	77.96	7.06	6.99	77.79	6.82	6.88	
8f	16	41	169-171	$C_{27}H_{30}N_2O_2$	4	14.2300 [H	•]	4	14.2315 [k	ა]	
	1 Of	10	209-210	$C_{27}H_{30}N_2O_2$	78.22	7.31	6.75	78.00	7.17	6.67	
8g	9g	43	131-133	$C_{28}H_{32}N_2O_2$	78.46	7.54	6.53	78.51	7.54	6.60	
- 9	I Og	12	171-173	$C_{28}H_{32}N_2O_2$	78.46	7.54	6.53	78.48	7.56	6.61	
8h	9 h	53	111-113	$C_{29}H_{34}N_2O_2$	78.69	7.76	6.33	78.82	7.71	6.18	
	10h	18	175-176	$C_{29}H_{34}N_2O_2$	78.69	7.76	6.33	78.90	7.88	6.51	
8i	9i	43	113-115	$C_{30}H_{36}N_2O_2$	78.90	7.96	6.13	78.86	7.99	6.16	
	10i	12	167-170	$C_{30}H_{36}N_2O_2$	4	56.2768 []	b]	4	56.2752 [l	b]	
8j	9 j	<l [c]<="" td=""><td></td><td>$C_{23}H_{22}N_2O_2$</td><td>3</td><td>358.1676 [I</td><td>b]</td><td>35</td><td>58.1689 [b</td><td>,d]</td></l>		$C_{23}H_{22}N_2O_2$	3	358.1676 [I	b]	35	58.1689 [b	,d]	
	10j	7 [c]		$C_{23}H_{22}N_2O_2$							
8k	9k	7 [d]		$C_{24}H_{24}N_2O_2$							
	10k	35 [a,e]	228-229	$C_{24}H_{24}N_2O_2$	77.39	6.51	7.52	77.23	6.53	7.44	
81	91	20 [f]	153-154	$C_{25}H_{26}N_2O_2$							
	101	12 [f]		$C_{25}H_{26}N_2O_2$							

[[]a] Each of the products, except 10k, was obtained as single isomer and assigned the cis-stereochemistry illustrated in Scheme II. Compound 10k was a mixture of isomers with the major isomer having the cis-stereochemistry and the minor isomer having the trans-stereochemistry. [b] Used hrms. [c] Compounds 9j and 10j were inseparable. The ratio was determined by ¹H nmr. [d] Pure 9k was not obtained. The amount of 9k in the mixture of 9k and 10k was determined by ¹H nmr. [e] Pure 10k (29%) and a mixture of 9k and 10k were obtained. The ratio of the products in the mixture was determined by ¹H nmr. [f] Pure 9l and a mixture of 9l and 10l were obtained. The ratio of the products in the mixture was determined by ¹H nmr.

W. E. Noland, M. J. Wahlstrom, M. J. Konkel, M. E. Brigham,

A. G. Trowbridge, L. M. C. Konkel, R. P. Gourneau, C. A. Scholten, N. H. Lee, J. J. Condoluci, T. S. Gac, M. Mostafaei Pour and P. M. Radford

Is the isomerization of the double bond kinetically or thermodynamically controlled? A 'H nmr study was used to follow the progress of the reaction of indole with cyclohexanone and maleimide in ethanol catalyzed by dilute hydrochloric acid. Aliquots were taken at selected times. An initial spectrum obtained 1 minute after adding the acid to the reaction mixture at 19° showed the appearance of a vinyl multiplet at 6.17 ppm and a new NH peak at 11.05 ppm, which were probably due to the formation of the vinylindole. Six minutes after heat was applied (total: 7 minutes), the temperature had reached 35°. At this point, a second spectrum showed the appearance of 6y and 6z along with the starting compounds and the vinylindole. Several spectra over the next 27 minutes (total: 33 minutes, 48° at the end of this time) showed that 6v and 6z increased while indole and maleimide decreased. The vinylindole peaks initially increased and then decreased until

they disappeared by the end of 33 minutes. After a total of 33 minutes, the only further changed noted was the appearance and buildup of a peak at 5.35 ppm. During the entire reaction, both tetrahydrocarbazole isomers appeared to be forming simultaneously in a constant ratio. This supports a mechanism of kinetic control.

Unsymmetrical ketones have the potential to give two different 3-vinylindoles, and, thus, two different regioisomeric tetrahydrocarbazoles (see Scheme III). In addition, there is the possibility of (E)- and (Z)-vinylindole intermediates, which could give different stereoisomers, although the (Z)-vinylindole would have been expected to have an unfavorable steric interaction between the 2-H of the indole and the β -substituent of the vinyl group. Thus, the (Z)-vinylindole would not have been able to adopt easily the s-cis conformation needed for the Diels-Alder reaction. The (E)- and (Z)-vinylindole intermediates could be in

Table X
Spectral Data for Tetrahydrocarbazoles 9

	1 _{H NMF}	Data [a],	J in Hertz			IR	MS
9	10 b	3a	4	5	Other	C=0 cm ⁻¹	(M°+, relative intensity)
b	4.29 d J = 8.6 1 H	3.50 dd J = 8.6, 4.8, 1 H	2.23 m 3 H [b]	3.33 dq J = 7.1 2.8, 1 H	8.59 (s, 1 H), 7.54 (d, J = 7.6, 1 H), 7.45-7.35 (m, 3 H), 7.30 (d, J = 7.8, 1 H), 7.21-7.12 (m, 4 H), 1.29-1.13 (m, 6 H)	1700	358 (66)
c	4.26 d J = 8.6 1 H	3.45 dd J = 8.4, 5.3, 1 H	2.29 m 1 H	3.30 dq J = 6.9, 4.6, 1 H	8.70 (s, 1 H), 7.55 (d, J = 7.4, 1 H), 7.45-7.34 (m, 3 H), 7.25 (d, J = 7.6, 1 H), 7.20-7.10 (m, 4 H), 2.19 (m, 1 H), 2.09 (m, 1 H), 1.58 (6 line m, 2 H), 1.22 (d, J = 7.1, 3 H), 1.07 (t, J = 7.2, 3 H)	1695	372 (64)
d	4.26 d J = 8.5 1 H	3.46 dd J = 8.5, 5.0, 1 H	2.27 m [c]	3.32 dq J = 6.9, 3.7, 1 H	$8.86 (s, 1 H), 7.56 (d, J=7.3, 1 H), 7.46\text{-}7.34 (m, 3 H), 7.27\text{-}7.11 \\ (m, 5 H), 2.23 (m [c]), 2.11 (m, 1 H), 1.52 (m, 4 H), 1.22 (d, J=7.1, 3 H), 1.02 (t, J=6.9, 3 H)$	1700	386 (68)
e	4.29 d J = 8.6 1 H	3.49 dd J = 8.5, 5.1, H	2.28 m	3.31 dq J = 6.9, 4.4, 1 H	8.70 (s, 1 H), 7.58 (d, J = 7.0, 1 H), 7.45-7.35 (m, 3 H), 7.28-7.11 (m, 5 H), 2.22 (m [c]), 2.10 (m, 1 H), 1.55 (m, 2 H), 1.43 (m, 4 H), 1.22 (d, J = 7.1, 3 H), 0.96 (t, J = 6.3, 3 H)	1700	400 (94)
f	4.28 d J = 8.5 1 H	3.48 dd J = 8.5, 5.1, 1 H	2.27 m	3.31 dq J = 7.1, 3.6, 1 H	8.66 (s, 1 H), 7.56 (m), 7.46-7.37 (m), 7.25-7.11 (m, area for 7.56-7.11 was 10 H [d]), 2.22 (m [c]), 2.11 (m), 1.54 (m), 1.39 (m, area for 1.54-1.39 was 10 H [e]), 1.22 (d, J = 7.1, 3 H), 0.95 (t, J = 6.6, 3 H)	1695	
g	4.28 d J = 8.5 1 H	3.48 dd J = 8.5, 5.1, 1 H	2.28 m	3.31 dq J = 6.7, 4.3, 1 H	8.55 (s, 1 H), 7.55 (d, J = 7.1, 1 H), 7.45-7.36 (m, 3 H), 7.28 (d, J = 7.5, 1 H), 7.20-7.12 (m, 4 H), 2.21 (m [c]), 2.11 (m, 1 H), 1.55 (m, 2 H), 1.45-1.24 (m, 8 H), 1.21 (d, J = 7.1, 3 H), 0.92 (t, J = 6.7, 3 H)	1705	428 (100)
h	4.29 d J = 8.5 1 H	3.49 dd J = 8.5, 5.1, 1 H	2.29 m 1 H	3.30 dq J = 6.9, 4.4, 1 H	8.53 (s, 1 H), 7.54 (d, J = 7.7, 1 H), 7.44-7.35 (m, 3 H), 7.29 (d, J = 7.9, 1 H), 7.20-7.14 (m, 3 H), 7.12 (t, J = 7.2, 1 H), 2.21 (m, 1 H), 2.09 (m, 1 H), 1.54 (m, 2 H), 1.45-1.34 (m, 10 H), 1.20 (d, J = 7.1, 3 H), 0.91 (t, J = 6.6, 3 H)	1705	442 (94)
i	4.28 d J = 8.5 1 H	3.48 dd J = 8.5, 5.1, 1 H	2.28 m 1 H	3.30 dq 1 H	8.58 (s, 1 H), 7.55 (d, J = 8.1, 1 H), 7.45-7.36 (m, 3 H), 7.28 (d, J = 8.0, 1 H), 7.19-7.15 (m, 3 H), 7.13 (t, J = 7.0, 1 H), 2.21 (m, 1 H), 2.10 (m, 1 H), 1.53 (m, 2 H), 1.45-1.23 (m, 12 H), 1.21 (d, J = 7.1, 3 H), 0.91 (t, J = 6.5, 3 H)	1700	456 (26)
1	4.32 d J = 8.5 1 H	3.45 dd J = 8.6, 5.4, 1 H	2.42 m 1 H	3.25 dq J = 6.6, 5.1, 1 H	8.49 (s, 1 H), 7.53 (d, J = 7.7, 1 H), 7.44-7.35 (m, 3 H), 7.31 (d, J = 7.8, 1 H), 7.21-7.09 (m, 4 H), 2.09 (m, 1 H), 1.96 (m, 2 H), 1.94 (m, 1 H), 1.20 (d, J = 7.1, 3 H), 0.89 (d, J = 8.4), 0.87 (d, J = 6.3, area for 0.89-0.87 was 6 H)	1716	386 (74)

[[]a] In deuteriochloroform, unless otherwise noted; pq = pseudo quartet. See Scheme II for the numbering system. [b] Includes a methylene.

[[]c] The area for 2.28-2.22 was 2 H. [d] Includes chloroform. [e] Includes water.

equilibrium in the acidic reaction medium. Then, if one of the vinylindole stereoisomers reacts much faster than the other, it could drain the other away. The product ratio, according to the Curtin-Hammitt principle [9], may not represent the relative stabilities of the intermediate vinylindoles. These possibilities were explored with a series of

Table XI
Spectral Data for Tetrahydrocarbazoles 10

	¹ H NMR	Data [a],	J in Hertz				IR	MS
10	10Ь	3a	4α	4β	5	Other	C=O cm ⁻¹	(M*+, relative intensity)
a [b]	4.44 d J = 8.4	3.62 dt J = 8.5,	2.15 m		3.25 <i>p</i> q	11.17 (s, 1 H), 7.55-7.42 (m), 7.39 (d, J = 8.0, area for 7.55-7.39 was 5 H), 7.25 (d, J = 7.1, 2 H), 7.08 (t, J = 7.1,	1690	330 (38)
	1 H	6.2, 1 H	2 H		1 H	1 H), $6.98 (t, J = 7.0, 1 H)$, $1.29 (d, J = 7.0, 3 H)$		
b	4.28	3.49	2.60	2.15	3.17	8.58 (s, 1 H), 7.56 (d, $J = 7.8$), $7.48-7.35$ (m, area for 7.56 -	1690	358 (17)
	d	8-line m	dt	dt	m	7.35 was 4 H), $7.31 (d, J = 7.9, 1 H)$, $7.22 (d, J = 7.4)$, 7.17		
	J = 8.9		J = 14.1	J = 14.1		(t, J = 7.3), 7.10 (t, J = 7.3, area for 7.31-7.10 was 4 H),		
	1 H	1 H	3.6, 1 H	6.2, 1 H	1 H	1.65 (m, 2 H), 1.47 (m, 1 H), 1.29-1.11 (m, 1 H), 0.93 (t, J = 6.5, 3 H)		
c	4.30	3.51	2.59	2.16	3.17	8.45 (s, 1 H), 7.56 (d, J = 7.8, 1 H), 7.47-7.33 (m, 4 H),	1690	372 (22)
	d	8-line m	dt	dt	m	$7.21-7.18 \text{ (m, 3 H)}, 7.10 \text{ (t, J} = 7.4, 1 H)}, 1.74 \text{ (m, 1 H)},$		
	J = 8.9		J = 14.1	J = 14.1,		$1.57 (m, \sim 2 H [c]), 1.41 (m, 2 H), 1.33 (m, 2 H), 0.88$		
	1 H	1 H	3.6, 1 H	6.0, 1 H	1 H	(t, J = 7.1, 3 H)		
d	4.30	3.51	2.59	2.18	3.17	8.53 (s, 1 H), 7.56 (d, J = 8.0, 1 H), 7.47-7.38 (m, 3 H),	1695	386 (17)
	d	8-line m	dt	dt	m	7.36 (d, J = 8.8, 1 H), 7.25-7.16 (m, 3 H), 7.11 (t, J = 7.4,		
	J = 8.9			J = 14.0		1 H), 1.80-1.22 (m, \sim 10 H [c]), 0.87 (t, J = 6.8. 3 H)		
	1 H	1 H	3.6, 1 H	6.0, 1 H	1 H			
e	4.31	3.52	2.59	2.16	3.16	8.46 (s, 1 H), 7.56 (d, J = 7.9, 1 H), 7.47-7.39 (m), 7.36	1690	400 (16)
	dd	8-line m		dt	m	(d, area for 7.47-7.36 was 4 H), 7.22-7.16 (m, 3 H),		
	J = 8.9,			J = 14.3		7.11 (t, $J = 7.3$, 1 H), 1.71 (m, 1 H), 1.57 (m, ~3 H [c]),		
	1.1, 1 H		•	6.5, 1 H	1 H	1.42 (m, 2 H), 1.26 (m, 6 H), 0.85 (t, J = 6.7, 3 H)		
ſ	4.30	3.51	2.59	2.14	3.17	8.51 (s, 1 H), 7.56 (d, J = 7.7, 1 H), 7.47-7.37 (m, 3 H),	1690	414 (16)
	dd	8-line m		dt	m	7.34 (d, J = 8.4, 1 H), 7.23-7.16 (m, 3 H), 7.11 (t, J = 8.4, 1 H)		
	J = 8.9,			, J = 14.1,		7.5, 1 H), 1.73 (m, 3 H), 1.62 (m), 1.43 (m), 1.35-1.21		
	1.0, 1 H			6.0, 1 H	1 H	(m, area for 1.62-1.21 was ~ 15 H[c]), 0.85 (d, J = 6.8, 3 H)	3.600	400 (33)
g	4.29	3.51	2.59	2.15	3.18	8.58 (s, 1 H), 7.57 (d, J = 7.8, 1 H), 7.47-7.30 (m, 3 H),	1690	428 (11)
	d	8-line m		dt	m	7.33 (d, $J = 8.1, 1 \text{ H}$), 7.25-7.19 (m, 3 H), 7.11 (dt, $J = 8.1, 1 \text{ H}$), 7.25-7.19 (m, 3 H), 7.11 (dt, $J = 8.1, 1 \text{ H}$), 7.12 (dt, $J = 8.1, 1 \text{ H}$), 7.13 (dt, $J = 8.1, 1 \text{ H}$), 7.14 (dt, $J = 8.1, 1 \text{ H}$), 7.15 (dt, $J = 8.1, 1 \text{ H}$), 7.15 (dt, $J = 8.1, 1 \text{ H}$), 7.17 (dt, $J = 8.1, 1 \text{ H}$), 7.18 (dt, $J = 8.1, 1 \text{ H}$), 7.19 (dt, $J = 8.1, 1 \text{ H}$), 7.19 (dt, $J = 8.1, 1 \text{ H}$), 7.11 (dt, $J = 8.1, 1 \text{ H}$), 7.11 (dt, $J = 8.1, 1 \text{ H}$), 7.11 (dt, $J = 8.1, 1 \text{ H}$), 7.12 (dt, $J = 8.1, 1 \text{ H}$), 7.13 (dt, $J = 8.1, 1 \text{ H}$), 7.14 (dt, $J = 8.1, 1 \text{ H}$), 7.15 (dt, $J = 8.1, 1 \text{ H}$), 7.15 (dt, $J = 8.1, 1 \text{ H}$), 7.17 (dt, $J = 8.1, 1 \text{ H}$), 7.17 (dt, $J = 8.1, 1 \text{ H}$), 7.18 (dt, $J = 8.1, 1 \text{ H}$), 7.19 (dt, $J = 8.1, 1 \text{ H}$), 7.19 (dt, $J = 8.1, 1 \text{ H}$), 7.19 (dt, $J = 8.1, 1 \text{ H}$), 7.10 (dt, $J = 8.1, 1 \text{ H}$), 7.11 (dt, $J = 8.1, 1 $		
	J = 8.9	> TT	J = 14.0		3 TT	7.9, 1.1, 1 H), 1.73 (m, 2 H), 1.43 (m), 1.38-1.19 (m,		
-	1 H	1 H	3.6, 1 H		1 H	area for 1.43-1.19 was 12 H), 0.86 (t, J = 6.7, 3 H)	1695	442 (16)
h	4.29	3.50	2.59	2.16	3.17	8.47 (s, 1 H), 7.56 (d, J = 7.8, 1 H), 7.47-7.37 (m, 3 H), 7.34 (d, J = 7.8, 1 H), 7.23-7.15 (m, 3 H), 7.10 (t, J =	1093	442 (16)
	d J = 8.2	8-line m	dt	dt	m	6.9, 1 H, $1.71 (m, 1 H)$, $1.62 (m, ~ 2 H [c])$, $1.42 (m, 2 H)$,		
	J = 0.2 1 H	1 H	J = 14.1, 3.6, 1 H		1 H	1.23 (m, 12 H), 0.86 (t, $J = 6.7, 3$ H)		
i	4.28	3.50	2.59	2.15	3.16	8.53 (s, 1 H), 7.56 (d, J = 7.8, 1 H), 7.48-7.37 (m, 3 H),	1690	
	4.20 d	8-line m	dt	dt	m	7.31 (d, J = 7.9, 1 H), 7.24-7.18 (m, 3 H), 7.13 (dt, J =	1070	
	J = 8.9	o-mie m		J = 14.1,		8.0, 1.8, 1 H), 1.69 (m, 1 H), 1.59 (m, 1 H), 1.49 (m, 2 H),		
	1 H	1 H	3.6, 1 H		1 H	1.24 (m, 14 H), 0.88 (t, J = 6.7, 3 H)		
k	4.29	3.49	2.62	2.13	3.29	8.56 (s, 1 H), 7.54 (d, $J = 7.8, 1 H$), 7.47-7.34 (m, 3 H),	1690	372 (19)
[d]	d	8-line m	dt	dt	m	7.31 (d, $J = 7.8, 1 \text{ H}$), 7.23-7.17 (m, 3 H), 7.10 (dt, $J =$		()
נ∼ו	J = 8.9	J IIIO III		J = 14.1,		7.9, 1.3, 1 H), 1.92 (m, 1 H), 1.55 (m, 1 H), 1.28 (m,		
	1 H	1 H	3.1, 1 H		1 H	1 H), 1.00 (d, J = 6.5, 3 H), 0.98 (d, J = 6.5, 3 H)		
			J	,				

[[]a] In deuteriochloroform, unless otherwise noted; pq = psuedo quartet. See Scheme II for the numbering system. [b] In dimethyl sulfoxide- d_6 .

[[]c] Includes water. [d] Major isomer.

W. E. Noland, M. J. Wahlstrom, M. J. Konkel, M. E. Brigham, A. G. Trowbridge, L. M. C. Konkel, R. P. Gourneau, C. A. Scholten, N. H. Lee, J. J. Condoluci, T. S. Gac, M. Mostafaei Pour and P. M. Radford

methyl ketones. Branchless methyl ketones gave, as the major products 9, those derived from the vinylindole having the most-substituted double bond. In all cases where the ketone was unsymmetrical, except with 2-butanone, a minor product 10, which was derived from the vinylindole with the least-substituted double bond, was also detected (Table IX). 2-Butanone gave only 9a, from a Diels-Alder reaction of the vinylindole with the most-substituted double bond. The ratio of 9:10 dropped slowly with increasing length of R^2 from about 7:1 for R^2 = Et to about 3.5:1 for $R^2 = n$ -decyl. Branching on the ketone decreased the amount of 9 relative to 10, with the smallest ratios corresponding to branching closet to the carbonyl. Thus, while 2-butanone gave exclusively 9a, 3-methyl-2-butanone gave a 1:9 mixture of 9j to 10j. Apparently, steric hindrance caused by branching slows down the Diels-Alder reaction of the more-substituted vinylindole enough so that, through an equilibrium, some is converted to the leastsubstituted vinylindole, which undergoes the Diels-Alder reaction more rapidly and irreversibly. If the branching is far enough from the carbonyl, however, steric hindrance is less and the ketone gives ratios of products that start to resemble ratios of products from branchless methyl ketones. Each of the regioisomers, except for 10k, was obtained as a single stereoisomer and, by comparison of the nmr data to those of 6y and 6z, including coupling constants, was assigned the all-cis-stereochemistry consistent with the tetrahydrocarbazoles derived from cyclic ketones. Physical and spectral data for 9 and 10 are provided in Tables IX-XI.

We have also used aldehydes in place of ketones (Table I, entries **n-u**). Regioisomers are not possible and stereoisomers are not possible at C-5. Only one stereoisomer was obtained from each aldehyde, and the ¹H nmr data indicated that these tetrahydrocarbazoles had the all-cisstereochemistry illustrated in Scheme II. Coupling constants, J_{3,4} of 4.3-4.6 Hertz were indicative of a cis relationship. The yields, in general, were lower with aldehydes than with ketones, ranging from 9% for **60** to 39% for **6q**.

EXPERIMENTAL

General Information.

Melting points were determined with a Thomas-Hoover Unimelt apparatus and are uncorrected. The nmr spectra were obtained on Bruker AC-200 and Bruker AC-300 FT NMR spectrometers and were referenced to the solvent. Infrared spectra were obtained using potassium bromide pellets. Electron-impact ms were obtained with a Kratos/AEI MS-30. Microanalyses were performed by MHW Laboratories, Phoenix, AZ.

General Procedure for the "In Situ Vinylindole Synthesis of Tetrahydrocarbazoles."

The indole (10.0 mmoles) and the maleimide (10.0 mmoles) were dissolved in the ketone (10.0 ml), or added to ethanol (10.0 ml) along with the ketone (10.0 mmoles). Hydrochloric acid (12 M, 0.20 mmole) was added, and the solution was heated to reflux or until the solution became too thick with precipitate to reflux properly. The refluxing solutions were monitored by thin-layer chromatography (silica gel) until the indole could no longer be detected. Then the solution was cooled and the resulting precipitate was filtered and washed with cold solvent. The filtrate was cooled further in the freezer to give additional crops which, in some cases, included a second isomer. The precipitates were recrystallized from ethanol to give pure tetrahydrocarbazoles.

General Procedure for Aromatization of Tetrahydrocarbazoles.

The tetrahydrocarbazole (0.50 mmole) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (1.0-3.0 mmoles) were dissolved in 1,4-dioxane. The resulting olive-green solution was refluxed until the tetrahydrocarbazole could no longer be detected by thin-layer chromatography (usually 30-90 minutes). The solution was cooled and filtered and the resulting precipitate was rinsed with methylene chloride. The filtrate and rinses were combined and washed once with saturated sodium bicarbonate solution (15 ml) and several times with water (20 ml each). The organic layer was dried over anhydrous magnesium sulfate and then the solvent was evaporated to give carbazoles 7.

Acknowledgements.

We are grateful for summer graduate fellowships to E. I. duPont de Nemours and Company to MJW (1983, 1986) and MJK (1988, 1989), to the Allied Corporation to MJW (1984), and to the Shell Companies Foundation to MJW (1987), and to the Wayland E. Noland Research Fellowship Fund for graduate fellowships to MJW and MJK. We thank the University of Minnesota Undergraduate Research Opportunities Program (UROP) for the research grants to MEB (1985) and PMR (1989) and the University of Minnesota Minority Scholars Development Program for a summer fellowship to RPG (1991).

REFERENCES AND NOTES

[1a] A major portion of this paper is from the Ph.D. Dissertation of Mary J. Wahlstrom, University of Minnesota, Minneapolis, MN, May 1988; Diss. Abstr., 49, 3759B (1989); [b] Portions of this paper were presented at meetings as follows: [i] J. J. Condoluci and W. E. Noland, The in situ Vinylindole Synthesis of Carbazoles, at the 28th Annual Minnesota A.C.S. Undergraduate Symposium in Chemistry, Macalester College, St. Paul, MN, May 11, 1985. [ii] M. E. Brigham and W. E. Noland, Use of Aldehydes in the in situ Vinylindole Synthesis of Carbazoles, at the First Annual National Conference on Undergraduate Research, University of North Carolina at Asheville, Asheville, NC, April 23, 1987. [iii] T. S. Gac and W. E. Noland, 2-Dimensional NMR Analysis of Carbazole Derivatives, at the 30th Annual Minnesota A.C.S. Undergraduate Research Symposium in Chemistry, University of Minnesota, St. Paul Campus, St. Paul, MN, May 2, 1987. [iv] P. M. Radford and W. E. Noland, The in situ Vinylindole Synthesis of Carbazoles Using α - and β -Tetralone and Heterocyclic Ketones, at the 32nd Annual Minnesota A.C.S. Undergraduate Research Symposium in Chemistry, University of Wisconsin - River Falls, River Falls, WI, May 6, 1989. [v] A. G. Trowbridge and W. E. Noland, In situ Vinylindole Synthesis of Substituted Tetrahydrocarbazoles, at the 34th Annual Minnesota A.C.S. Undergraduate Research Symposium in Chemistry, St. Olaf College, Northfield, MN, May 4, 1991.

- [2a] W. E. Noland, W. C. Kuryla and R. F. Lange, J. Am. Chem. Soc., 81, 6010 (1959); [b] W. E. Noland and R. J. Sundberg, J. Org. Chem., 28, 884 (1963).
- [3] For reviews of Diels-Alder reactions of vinylindoles see: [a] U. Pindur, Chimia, 44, 406 (1990); [b] U. Pindur, Heterocycles, 27, 1253 (1988); [c] U. Pindur and L. Pfeuffer, Chem.-Ztg., 110, 95 (1986).
 - [4] W. E. Noland and S. R. Wann, J. Org. Chem., 44, 4402 (1979).
- [5a] W. E. Noland, M. R. Venkiteswaran and C. G. Richards, J. Org. Chem., 26, 4241 (1961); [b] W. E. Noland, M. R. Venkiteswaran and R. A. Lovald, J. Org. Chem., 26, 4249 (1961); [c] W. E. Noland, M. R. Venkiteswaran, C. G. Richards and H. S. Desai, J. Org. Chem., 26, 4263
- (1961); [d] K. Freter, J. Org. Chem., 40, 2525 (1975).
- [6] J. D. Lambert and Q. N. Porter, Aust. J. Chem., 34, 1483 (1981). [7] W. E. Noland, M. J. Konkel, M. S. Tempesta, R. D. Cink, D. M.

Powers, E. O. Schlemper and C. L. Barnes, J. Heterocyclic Chem., 30,

[8] R. M. Moriarity, Topics in Stereochemistry, Vol. 8, E. L. Eliel and N. L. Allinger, eds, John Wiley and Sons, New York, NY, 1974, p 329.

[9] A. Bassindale, The Third Dimension in Organic Chemistry, F. L. Boschke, W. Fresenius, J. F. K. Huber, E. Pungor, G. A. Rechnitz, W. Simon and T. S. West, eds, John Wiley and Sons, New York, 1984, p 164.